

摆动工艺对钛合金窄间隙激光填丝焊缝成形及 气孔率的影响

徐楷昕¹, 雷振¹, 黄瑞生^{1*}, 方乃文^{1,2}, 曹浩¹ ¹哈尔滨焊接研究院有限公司, 黑龙江哈尔滨 150028; ²哈尔滨理工大学材料科学与工程学院, 黑龙江哈尔滨 150086

摘要 本文探索了光束摆动对 TC4 钛合金窄间隙激光填丝焊缝成形和气孔率的影响。研究结果表明,无摆动时, 焊缝表面起伏不连续,横截面窄而深,增加光束摆动之后,表面成形连续均匀,横截面相对变得宽而浅。当采用垂 直或圆形摆动方式,摆动幅度为1.5~2 mm,摆动频率在20~100 Hz 之间时,获得了焊缝表面和横截面成形良好 的焊接接头。当采用圆形摆动,摆幅为2 mm,摆动频率在100~200 Hz 之间时,获得的焊缝无明显气孔。采用该 工艺进行了 20 mm 厚 TC4 钛合金窄间隙激光填丝焊接,焊接接头呈银白色,焊缝均匀连续,接头拉伸性能测试表 明,其最大抗拉强度达 930 MPa,接头强度与母材等强,断裂方式为韧性断裂,拉伸试样断裂在母材。 关键词 激光技术;光束摆动;钛合金;焊缝成形;气孔率

中图分类号 TG456.7 文献标志码 A

doi: 10.3788/CJL202148.0602111

1 引 言

钛合金具有低密度、高比强度、优良的耐腐蚀 性能等特点^[1-2],被誉为铁和铝之后的第三金属, 作为一种优良的结构材料,在航空航天、海洋工 程、医学等领域中得到了广泛应用^[3-4],且厚板钛 合金的需求越来越大。目前厚板钛合金主要采用 窄间隙非熔化极稀有气体保护电弧(TIG)焊接和 电子束焊接。然而,窄间隙 TIG 焊接存在热输入 大、间隙大、易出现侧壁未熔合等问题;电子束焊 接则局限于设备昂贵、工件形状尺寸受限等缺点, 影响其推广应用。

窄间隙激光填丝焊接热输入小、焊接速度快、热影响区小、变形小,兼备了激光焊接和窄间隙坡口的 优势,在厚板焊接中具有巨大优势^[5-6]。但是侧壁未 熔合和气孔是目前窄间隙激光填丝焊接工艺存在的 突出问题,文献[7-12]提出光束摆动,通过往复摆动 反复重熔部分焊缝,加大熔池的流动与搅拌,束流的 偏转增加单位面积热输入,减小深宽比,达到改善成 形和抑制气孔的作用。自 21 世纪初,国内外学者就 开始进行了窄间隙摆动激光焊接的研究,Cai 等^[13-14]开发了窄间隙激光摆动焊接工艺,进行了 150 mm厚度的碳钢窄间隙焊接,接头成形良好,气 孔率符合标准;邹吉鹏等^[15]实现了 130 mm厚 5A06 铝合金的窄间隙扫描激光焊接,在摆幅大于 1 mm,高频摆动下得到了气孔率低于 1%,无明显 缺陷的优质焊接接头。而目前在国内外,多数学者 着重于研究激光功率、焊接速度、离焦量等参数对钛 合金焊接质量的影响,在摆动工艺方面研究内容较 少,鲜有报道。

本文在 20 mm 厚 TC4 钛合金板上进行了大量的摆动工艺试验探索,研究了摆动方式、摆动幅度、 摆动频率等对坡口间隙为 3.2 mm 的 TC4 钛合金 单道激光填丝焊缝成形及气孔率的影响,在优化工 艺后实现了 20 mm 厚 TC4 钛合金窄间隙摆动激光 填丝焊接。

收稿日期: 2020-08-13; 修回日期: 2020-09-07; 录用日期: 2020-09-15

基金项目:国家科技重大专项(2019ZX04004001)

^{*} E-mail: huangrs8@163.com

第 48 卷 第 6 期/2021 年 3 月/中国激光

2 试 验

2.1 试验材料

试验所用材料为 20 mm 厚退火态 TC4(Ti-6Al-4V)钛合金,所用焊丝为 TC3(Ti-5Al-4V)实心 焊丝,直径为 1.2 mm。母材与焊丝成分如表 1 所 示。焊前对试板进行打磨和酸洗,酸洗溶液采用体 积分数为 5%HF+30%HNO₃+H₂O,去除表面油 污和氧化物,水洗清除酸液后烘干备用。

表1 母材及焊丝的化学成分(质量分数,%)

Table 1	Chemical composition of base metal and
	filler metal (mass fraction, $\frac{0}{0}$)

Element	Ti	Al	V	Fe	Ν	0	Н
TC4	Bal.	6.30	4.11	0.018	0.007	0.14	0.001
TC3	Bal.	4.75	3.82	0.044	0.006	0.18	0.001

2.2 试验方法

焊接试验采用 IPG 公司生产的 YLS-30000-S4 光纤激光器,激光头 FLW D50W 最大输出功率为 12 kW。试验中采用的光束摆动方式除无摆动以外 有三种,分别是线性、圆形和无穷形摆动,线性摆动 方向垂直于焊接方向,本文中称为垂直摆动,如图 1 所示。焊接过程由 KUKA 机器人控制运动完成。

图 1 元术法切方式

单道窄间隙摆动工艺试验所用坡口如图 2 所示,焊接过程中采用自制保护气罩后置保护,如图 3 所示,由于窄间隙坡口的约束作用,保护气很容易排

除间隙里的空气,并且气罩与万向节连接,便于调节 气罩位置及保护区域。在焊接打底层时附加背保护 气,保护气体均采用体积分数为 99.99%的氩气。 在施焊前提前通氩气,排除工件表面和背部周围的 空气;焊接完成后继续通氩气,使正反面的焊缝高温 区域在冷却过程中依然得到保护。经试验调试确 定,在保护气流量为 15 L/min 时,得到保护良好的 银白色焊缝。

窄间隙单道摆动焊接工艺试验完成后,经X射 线检测,再从试板上取样研磨抛光,用 kroll 试剂 (体积分数为1~3%HF+2~6%HNO。水溶液)腐 蚀,在显微镜下观察焊缝截面,测量得到熔宽与熔深 等数据,并对焊缝成形系数及气孔率进行计算,然后 对上述试验数据进行优化,对 20 mmTC4 钛合金平 板进行窄间隙激光填丝焊接验证,并对得到的焊接 接头进行 X 射线检测和拉伸性能测试。

3 试验结果与分析

3.1 摆动工艺对焊缝成形的影响

经前序工艺试验验证,在窄间隙单道填丝焊接 时采用激光功率为3kW、焊接速度为0.6 m/min、 送丝速度为3 m/min的焊接参数,能得到成形好、 气孔率较低的焊缝,本文旨在通过光束摆动来进一 步改善成形和降低气孔率,仅对摆动工艺进行调整, 在摆动频率为60 Hz、摆幅为2 mm 的基础上变动, 具体按摆动方式、摆动幅度和摆动频率分为三个组 别进行试验。试验后得到焊缝表面成形以及焊缝横 截面形貌,如表 2~4 所示。

表 2 为不同摆动方式下焊缝的表面成形和横截 面形貌,原始坡口尺寸如横截面虚线所示。可以看 出,无摆动时焊缝表面起伏不平,连续性及稳定性较 差,横截面深度方向上形成较深的匙孔,呈丁字形;

表 2 摆动方式对焊缝成形的影响

Table 2 Effect of oscillation modes on weld formation

表 3 摆动幅度对焊缝成形的影响

Table 4 Effect of oscillation frequency on weld formation Oscillation frequency /Hz Cross section Appearance 20 5 mm 60 5 mm 2 mm 100 5 mm 2 mm 1502 mm 200 5 mm 2 mm

摆动频率对焊缝成形的影响

表 4

增加光束摆动之后,小孔稳定性增强,熔池尺寸增 大,熔池金属的铺展性提高,焊缝表面成形得到改 善,连续均匀,熔池面积增大,向两侧铺展,熔宽增 加;焊缝横截面成形也由长条的丁字形变为梨形,侧 壁熔合更好。

研究论文

在圆形摆动、频率为 60 Hz 的工艺下,表 3 反映 了摆动幅度对焊缝成形的影响。摆动幅度的大小主 要影响激光能量的分布状态、匙孔形状尺寸以及熔 池的尺寸。当摆幅为 0.2~0.6 mm 时,焊缝表面成 形不均匀且不连续;当摆幅为 1~2 mm 时,焊缝表 面成形连续性和均匀性较好。从横截面来看,摆幅 为 0.2~1 mm 时,焊缝在深度方向上能量集中于中 部,仍体现为长条的丁字形,此时表现为熔深大,熔 宽较小;当摆幅为 1.5~2 mm 时,焊缝横截面呈梨 形,熔深减小,熔池在横向得到铺展,侧壁熔合更为 良好。

在圆形摆动、摆幅为2 mm 的工艺下,表4 反映 了不同摆动频率对焊缝成形的影响。摆动频率决定 了单位时间内光束对熔池搅动的程度和光束在垂直 于焊接方向上的停留时间,从而影响熔池的铺展和 气孔的生成及上浮,高频振荡光束能够改变焊接温 度场分布和熔池流动状态,进而改善焊缝成形。当 摆动频率为 20~100 Hz 时,焊缝表面成形均匀连 续、平滑,横截面上焊缝呈梨形;当频率为 150~ 200 Hz 时,焊缝中部出现棱状凸起,横截面表现为 两侧侧壁略微下凹,这种现象在多层焊接时容易造 成后续焊道出现侧壁未熔合。分析认为熔池在激光 光束的高频率扫描作用下,还未来得及向侧壁铺展 就被带到熔池中心位置,从而在焊缝中部容易出现 棱状凸起的现象。

第 48 卷 第 6 期/2021 年 3 月/中国激光

图 4 为不同摆动工艺下熔宽 B、熔深 H 及焊缝 成形系数(B/H)的关系曲线。在窄间隙焊接中,为 确保不出现侧壁和根部未熔合缺陷,一般采用较大 的焊缝成形系数,即较大的熔宽和较小的熔深。一 方面,熔池可以向两侧铺展更多,侧壁熔合更好;另 一方面,熔深较小时,气孔较容易上浮,可以达到减 小气孔率的目的。由图 4(a)可以看出,无摆动情况 下熔深较大、熔宽较小,无论光束以何种方式进行摆 动,在单位时间和单位面积上的激光能量密度均较 低,能量不再集中于中部,而向两侧分散,导致熔深

变小、熔宽增加。图 4(b)反映了随着摆动幅度在一 定范围内增加,熔深略有减小,熔宽变化不大,此时激 光能量的分布受激光功率、摆动频率和离焦量的影响 较大。而在不同摆动频率下,熔宽和熔深变化较小。

图 4 摆动工艺对熔宽、熔深及焊缝成形系数的影响。(a)摆动方式;(b)摆动幅度;(c)摆动频率 Fig. 4 Effect of oscillation parameters on width and depth of fusion and form factor of weld. (a) Oscillation modes; (b) oscillation amplitude; (c) oscillation frequency

3.2 摆动工艺对单道焊缝气孔率的影响

焊接完成后对每道焊缝进行 X 射线检测气孔 含量,计算单道焊缝中气孔总面积与焊缝纵截面面 积比值,两者的比值即为单道焊缝的气孔率。分别 计算不同摆动方式、摆动幅度、摆动频率下的气孔 率,计算结果如图 5 所示。

图 5 摆动工艺对气孔率的影响。(a)摆动方式;(b)摆动幅度;(c)摆动频率

Fig. 5 Effect of oscillation parameters on porosity. (a) Oscillation modes; (b) oscillation amplitude; (c) oscillation frequency

由图 5(a)可以看出,垂直和圆形摆动的气孔 率较低,无穷形摆动相比于无摆动情况,气孔未得 到明显抑制。图 5(b)反映了摆动幅度对气孔率的 影响,摆动幅度较小时,激光匙孔的形状没有发生 根本性变化,熔池流动扩张不明显,能量集中于焊 缝中部;摆幅为2mm时,气孔率较低,此时能量向 两侧扩散,气孔容易浮出,摆幅过大会烧损上方未 焊侧壁及表面坡口,从而影响焊接接头性能,应根 据坡口间隙情况适当选择较大的摆幅。图 5(c)为 不同摆动频率下的气孔率,可以看出,当频率大于 100 Hz时,未发现气孔,如图 6 所示,在摆动频率 为 60 Hz 的情况下焊缝中心存在的气孔尺寸较 小,分析认为,无摆动焊接条件下,熔池的运动状 态相对比较单一,气体较难快速逸出;当摆动频率 大于100 Hz时,焊缝气孔的数量减少直至消失, 如图 6(c)~(e) 所示。

- 图 6 不同摆动频率下的 X 射线底片。(a)20 Hz;(b)60 Hz; (c)100 Hz;(d)150 Hz;(e)200 Hz
- Fig. 6 X-ray films with different oscillation frequencies. (a) 20 Hz; (b) 60 Hz; (c) 100 Hz; (d) 150 Hz; (e) 200 Hz

3.3 20 mm 厚钛合金窄间隙激光填丝焊接

在综合考虑焊缝表面成形以及气孔率等因素后,对摆动工艺参数进行优化:选择圆形摆动模式、频率为100 Hz、摆幅为2 mm的工艺参数进行20 mm 厚钛合金平板窄间隙激光摆动填丝焊接。

考虑到焊接过程中引起的变形及间隙收缩问题,设计2°的U型坡口,坡口间隙为3.5 mm,钝边为4 mm厚,坡口形式如图7所示。焊接过程由激光自熔打底焊和激光填丝焊接组成,自熔焊采用激光功率为2.8 kW、焊接速度为0.6 m/min,填充焊的焊接参数为激光功率为3 kW、焊接速度为0.6 m/min、送丝速度为3 m/min。在单道多层焊接过程中,每焊完1 道后进行层间清理,防止坡口中残余的飞溅、杂质影响后续焊接质量,并控制层间温度至40°C以下再进行后续焊接。共完成

图 7 20 mm 厚 TC4 钛合金窄间隙焊接坡口尺寸 Fig. 7 Groove dimension of narrow gap welding for 20 mm TC4 titanium alloy

1 道激光自熔焊和 9 道激光填充焊,如图 8(c) 所示。

焊后得到的接头整体形貌如图 8 所示。焊接接 头表面成形良好,呈银白色,说明保护效果较好。整 个接头经 X 射线检测,如图 9 所示,未发现明显的 未熔合、裂纹、气孔等焊接缺陷。表 5 为 20 mm 厚 钛合金焊接接头的抗拉强度,取样位置及断口形貌 如图 10 所示,可见断口中存在大量韧窝,试样呈韧 性断裂。抗拉强度最大值为 930 MPa,达到母材的 100%,断后伸长率较好,断裂位置均在母材。

图 8 20 mm 厚 TC4 钛合金窄间隙焊接接头形貌、宏观 结构。(a)正面;(b)背面;(c)横截面

Fig. 8 Morphology and macrostructure of 20 mm TC4 titanium alloy narrow gap joint. (a) Front; (b) back; (c) cross section

图 9 20 mm 厚 TC4 钛合金接头 X 射线底片 Fig. 9 X-ray film of 20 mm TC4 titanium alloy joint 表 5 20 mm 厚 TC4 钛合金焊接接头拉伸强度 Table 5 Tensile strength of 20 mm TC4 titanium alloy joint

Sample
codeTensile strength / MPa Elongation / %Fracture
location19259.5Base29309.4Base

图 10 拉伸试样取样位置、断裂位置及断口形貌。(a)取 样位置;(b)断裂位置;(c)断口形貌 50 倍;(d)断 口形貌 1000 倍

Fig. 10 Tensile sampling position, fracture location, and fracture morphology. (a) Sampling position; (b) fracture location; (c) fracture morphology 50 ×; (d) fracture morphology 1000×

4 结 论

在 TC4 钛合金窄间隙激光填丝焊接中,与非摆动激光焊相比,光束摆动后能改善表面成形,得到连续平滑的焊缝,且在圆形摆动下,摆幅为 1.5~2 mm、频率为 20~100 Hz 时,能得到成形良好的焊缝。摆动方式为垂直和圆形时,气孔较少;摆动方式为不摆动和无穷形摆动时气孔率较大。摆幅为 2 mm 时,气孔率较小;当摆动频率在 100~200 Hz 之间时未发现明显气孔。

综合考虑焊缝成形和气孔率的情况下,采用圆 形摆动、2 mm 摆幅、100 Hz 频率的摆动工艺参数, 完成了 20 mm 厚钛合金窄间隙激光摆动填丝焊接, 接头表面成形良好,X 射线检测无明显缺陷,接头 抗拉强度最大为 930 MPa,为韧性断裂,拉伸试样断 裂在母材,接头强度与母材等强。

参考文献

[1] Chang H, Wang X D, Zhou L. Present situation and development trend of titanium alloy andits applications in ships [J]. Materials China, 2014, 33 (Z1): 603-607,629.
常辉, 王向东,周廉. 钛合金及其在舰船装备上的应

用现状与趋势[J].中国材料进展,2014,33(Z1): 603-607,629.

[2] Sun W J, Wang S L, Chen Y H, et al. Development of advanced welding technologies for titanium alloys 第48卷第6期/2021年3月/中国激光

[J]. Aeronautical Manufacturing Technology, 2019, 62(18): 63-72.

孙文君, 王善林, 陈玉华, 等. 钛合金先进焊接技术研究现状[J]. 航空制造技术, 2019, 62(18): 63-72.

- [3] Zhang T G, Zhang Q, Zhuang H F, et al. Microstructure and properties of Ti₂SC-Ti₂Ni composite structural phase self-lubricating laser cladding layer on TC4 surface [J]. Acta Optica Sinica, 2020, 40(11): 1114001.
 张天刚,张倩,庄怀风,等. TC4 表面 Ti₂SC-Ti₂Ni 复合结构相的自润滑激光熔覆层组织与性能[J].光 学学报, 2020, 40(11):1114001.
- [4] Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy [J]. Chinese Journal of Lasers, 2020, 47(1): 0102003.
 廖聪豪,周静,沈洪. 增材制造 TC4 钛合金在激光 抛光前后的电化学腐蚀性能[J]. 中国激光, 2020, 47(1): 0102003.
- [5] Huang J. Advances in laser multilayer welding technology for thick plate and narrow gap[J]. MW Metal Forming, 2013(S2): 95-98.
 黄坚. 厚板窄间隙激光多层焊接技术进展[J]. 金属 加工(热加工), 2013(S2): 95-98.
- [6] Cui B, Zhang H, Zhao C Y, et al. Microstructure and mechanical properties of TC4 titanium alloy joint by ultra-narrow gap laser welding [J]. Materials Review, 2018, 32(S2): 333-335,344.
 崔冰,张华,赵常宇,等. 超窄间隙激光焊接 TC4 钛 合金接头组织及性能研究 [J]. 材料导报, 2018, 32 (S2): 333-335,344.
- [7] Zhao L, Zhang X D, Chen W Z, et al. Repression of porosity with beam weaving laser welding [J]. Transactions of the China Welding Institution, 2004, 25(1): 29-32.
 赵琳,张旭东,陈武柱,等.光束摆动法减小激光焊

接气孔倾向[J]. 焊接学报, 2004, 25(1): 29-32. [8] Li J Z, Liu Y B, Sun Q J, et al. Effects of laser beam wobble on weld formation characteristics, microstructure, and strength of aluminum alloy/steel joints[J]. Chinese Journal of Lasers, 2020, 47(4):

李军兆, 刘一搏, 孙清洁, 等. 激光摆动模式对铝/ 钢焊接接头成形特征及组织、强度的影响[J]. 中国 激光, 2020, 47(4): 0402010.

[9] Chen J Y, Wang X N, Lü F, et al. Microstructure and mechanical properties of welded joints of low carbon steels welded by laser beam oscillating welding [J]. Chinese Journal of Lasers, 2020, 47 (3): 0302006.

0402010.

陈靖雨,王晓南,吕凡,等.激光束摆动焊接低碳钢 焊接接头的组织和力学性能[J].中国激光,2020, 47(3):0302006.

- [10] Cao H, Lei Z, Huang R S, et al. Effects of laser swing welding parameters on porosity and weld formation of high strength steel [J]. Welding & Joining, 2019(4): 39-43,67.
 曹浩, 雷振, 黄瑞生, 等. 激光摆动焊接工艺参数对 高强钢气孔率和焊缝成形的影响[J]. 焊接, 2019 (4): 39-43,67.
- [11] Zhou L T, Wang X Y, Wang W, et al. Effects of laser scanning welding process on porosity rate of aluminum alloy [J]. Transactions of the China Welding Institution, 2014, 35(10): 65-68,72,116.
 周立涛, 王旭友, 王威, 等. 激光扫描焊接工艺对铝 合金焊接气孔率的影响[J]. 焊接学报, 2014, 35(10): 65-68,72,116.
- [12] Li K, Wang W, Shan J G, et al. Analysis of keyholetype pore suppressing in fiber laserwelded TC4 titanium alloy with beam weaving [J]. Transactions

第48卷第6期/2021年3月/中国激光

of the China Welding Institution, 2016, 37(11): 43-46,131.

李坤, 王威, 单际国, 等. TC4 钛合金光纤激光摆动 焊抑制小孔型气孔的原因分析[J]. 焊接学报, 2016, 37(11): 43-46,131.

- [13] Cai C, Li L, Tao W, et al. Effects of weaving laser onscanning laser-MAG hybrid welding characteristics of high-strength steel[J]. Science and Technology of Welding and Joining, 2017, 22(2): 104-109.
- [14] Yamazaki Y, Abe Y, Hioki Y, et al. Development of narrow gap multi-layer welding process using oscillation laser beam [J]. Welding International, 2017, 31(1): 38-47.
- [15] Zou J P, Li L S, Gong J F, et al. Aluminum alloy thick plate laser scanning wire filling welding porosity suppression[J]. Transactions of the China Welding Institution, 2019, 40(10): 43-47,66,163.
 邹吉鹏,李连胜,宫建锋,等. 铝合金厚板激光扫描 填丝焊接气孔抑制[J]. 焊接学报, 2019, 40(10): 43-47,66,163.

Effects of Oscillation Parameters on Weld Formation and Porosity of Titanium Alloy Narrow-Gap Laser Wire Filling Welding

Xu Kaixin¹, Lei Zhen¹, Huang Ruisheng^{1*}, Fang Naiwen^{1,2}, Cao Hao¹ ¹Harbin Welding Institute Limited Company, Harbin, Heilongjiang 150028, China;

² School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150086, China

Abstract

Objective Titanium and its alloys are indispensable and satisfactory owing to its superior physical and chemical properties: high specific strength and modulus, excellent thermal strength, and corrosion resistance. Against the background of the industrial rapid development, the aerospace manufacturing industry has put forward requirements for light-weight and large-scale aircraft, which intensely increased the use of titanium alloys. There are considerable studies based on laser welding of titanium alloy sheets, and significant effort has been made. However, a few studies have been conducted on the joining of thick titanium alloy plates, leaving many technical problems unsolved. For the welding of a thick titanium alloy plate, the arc welding process is a low-cost method, with poor weld beam formation, high residual stress, and wide heat-affected zone. Electron beam welding (EBW) is one of the high energy density welding processes. The challenges of EBW is obvious, and its application is severely limited by the vacuum condition. Several studies stated that narrow-gap laser filling welding is an optimal choice for the joining of thick plates, compared with other welding processes. In this paper, we investigate and analyze the effects of laser beam swing parameters on the formation and porosity of TC4(Ti-6Al-4V) titanium alloy narrow-gap laser filling welding. We obtain that it could eliminate the lack of fusion and reduce porosity with matched laser beam oscillation mode, amplifier, and frequency. It could provide basic data and theoretical supports for thick titanium alloy welding.

Methods Titanium alloy plate (TC4(Ti-6Al-4V)) and wire (TC3(Ti-5Al-4V)) are used in this study. First, 2 mmwide-gap TC4(Ti-6Al-4V) is filled with TC3 wire by laser swing welding, which takes different oscillation modes: amplitude and frequency. A well-formed surface and cross-section with low porosity are selected as suitable oscillation parameters. Next, 20 mm-thick TC4(Ti-6Al-4V) is welded by selected parameters. Apart from surface formation and cross-section, the weld joint has been analyzed by X-ray pore detection and tested tensile strength. Then, the tensile fracture is analyzed by a scanning electron microscope.

Results and Discussions The weld surface formation cloud improves a lot despite the laser beam oscillation mode considered. The fusion depth gets smaller, and the fusion width gets bigger in the cross-section (Table 2), which could reduce the lack of fusion. When the oscillation amplitude is between 1.5 mm and 2 mm, and the frequency is between 100 Hz and 200 Hz with circular oscillation, the surface of the weld becomes continuously smooth, and the cross-section turns wider and shallower (Table 3 and Table 4). A bigger form factor of weld applies to narrow-gap welding to reduce lack of fusion matched oscillation parameters could be selected with form factor and porosity (Fig. 4). When the oscillation frequency is between 100 Hz and 200 Hz with 2 mm amplitude and circular swing, no pore was detected on the X-ray films (Fig. 5). 20-mm-thick TC4(Ti-6Al-4V) has been welded by narrow-gap laser beam swing with circular 2 mm and 100 Hz oscillation. The results showed that the weld joint gets a well-formed surface and has no pore in the X-ray film. In the tensile strength tests, the weld joint maximal tensile strength reaches 930 MPa, which is the same as base metal and the tensile samples are ductile fracture (Fig. 10).

Conclusions In this study, narrow-gap TC4 (Ti-6Al-4V) plates are welded by swing laser wire filling welding. Compared with non-oscillating laser welding, the surface forming can be improved after the beam swings, and the continuous smooth weld can be obtained. Under the circular oscillation, when the oscillation amplitude is between 1.5 mm and 2 mm, and the frequency is between 20 Hz and 100 Hz, the well-formed weld can be obtained. When the oscillation mode is linear and circular, the porosity is relatively small, while when the oscillation mode is non-oscillating and infinite oscillation, the porosity is relatively large. When the oscillation amplitude is 2 mm, the porosity is small, and no obvious pore is found from the X-ray films when the oscillation frequency is between 100 Hz and 200 Hz. Owing to comprehensive consideration of weld formation and porosity, with the circular oscillation 2 mm amplitude and 100 Hz frequency of the oscillation parameters, we have completed the 20 mm-thick TC4(Ti-6Al-4V) narrow-gap laser wire filling welding with well forming joint surface, and no obvious pore was detected from X-ray detection. The maximum tensile strength of the 20 mm-thick weld joint reaches 930 MPa, which is the same as base metal, and the fracture mode is a ductile fracture with a dimple fracture surface under the scanning electron microscope. We obtain matched oscillation parameters. The data has been validated with well formation and property from the test of the 20 mm-thick weld joint, which plays a significant role in thick titanium alloy welding.

Key words laser technique; laser beam oscillation; titanium alloy; weld formation; porosity

OCIS codes 140.3390; 350.3850; 350.3390